Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra. | \(-g_{21}+g_{20}-g_{18}+g_{17}\) | \(g_{19}-g_{18}+g_{17}\) | \(-g_{5}-g_{2}+g_{1}\) | \(-g_{6}-g_{3}+g_{2}\) | \(g_{33}+g_{32}\) | \(g_{25}\) | \(g_{22}\) | \(g_{24}\) | \(-g_{11}+g_{7}\) | \(g_{34}\) | \(g_{27}\) |
weight | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) | \(\omega_{1}+2\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}} \) → (1, 0) | \(\displaystyle V_{\omega_{2}} \) → (0, 1) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2) | \(\displaystyle V_{2\omega_{1}+\omega_{2}} \) → (2, 1) | \(\displaystyle V_{\omega_{1}+2\omega_{2}} \) → (1, 2) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
| Semisimple subalgebra component.
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) | \(2\omega_{1}+\omega_{2}\) \(2\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-2\omega_{1}+3\omega_{2}\) \(\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(-\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) \(\omega_{1}-3\omega_{2}\) \(-\omega_{1}-2\omega_{2}\) | \(\omega_{1}+2\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(2\omega_{1}\) \(\omega_{2}\) \(\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(2\omega_{1}-3\omega_{2}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(-2\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) | \(2\omega_{1}+\omega_{2}\) \(2\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-2\omega_{1}+3\omega_{2}\) \(\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(-\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) \(\omega_{1}-3\omega_{2}\) \(-\omega_{1}-2\omega_{2}\) | \(\omega_{1}+2\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(2\omega_{1}\) \(\omega_{2}\) \(\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(2\omega_{1}-3\omega_{2}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(-2\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{-\omega_{2}}\) | \(\displaystyle M_{\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{\omega_{2}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{2}}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-2\omega_{1}+3\omega_{2}}\oplus 2M_{\omega_{1}} \oplus 2M_{-\omega_{1}+\omega_{2}}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-3\omega_{1}+2\omega_{2}}\oplus 2M_{-\omega_{2}}\oplus M_{-2\omega_{1}} \oplus M_{\omega_{1}-3\omega_{2}}\oplus M_{-\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+2\omega_{2}}\oplus M_{-\omega_{1}+3\omega_{2}}\oplus M_{2\omega_{1}}\oplus 2M_{\omega_{2}}\oplus M_{3\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{\omega_{1}-\omega_{2}}\oplus 2M_{-\omega_{1}}\oplus M_{2\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}} \oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{1}-\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle 2M_{\omega_{1}}\oplus 2M_{-\omega_{1}+\omega_{2}}\oplus 2M_{-\omega_{2}}\) | \(\displaystyle 2M_{\omega_{2}}\oplus 2M_{\omega_{1}-\omega_{2}}\oplus 2M_{-\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{\omega_{2}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle 2M_{\omega_{1}+\omega_{2}}\oplus 2M_{-\omega_{1}+2\omega_{2}}\oplus 2M_{2\omega_{1}-\omega_{2}}\oplus 4M_{0}\oplus 2M_{-2\omega_{1}+\omega_{2}} \oplus 2M_{\omega_{1}-2\omega_{2}}\oplus 2M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{2}}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-2\omega_{1}+3\omega_{2}}\oplus 2M_{\omega_{1}} \oplus 2M_{-\omega_{1}+\omega_{2}}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-3\omega_{1}+2\omega_{2}}\oplus 2M_{-\omega_{2}}\oplus M_{-2\omega_{1}} \oplus M_{\omega_{1}-3\omega_{2}}\oplus M_{-\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+2\omega_{2}}\oplus M_{-\omega_{1}+3\omega_{2}}\oplus M_{2\omega_{1}}\oplus 2M_{\omega_{2}}\oplus M_{3\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{\omega_{1}-\omega_{2}}\oplus 2M_{-\omega_{1}}\oplus M_{2\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}} \oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{1}-\omega_{2}}\) |